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Abstract: Air pollution is one of the leading causes of mortality worldwide. An accurate assessment 
of its spatial and temporal distribution is mandatory to conduct epidemiological studies able to 
estimate long-term (e.g., annual) and short-term (e.g., daily) health effects. While spatiotemporal 
models for particulate matter (PM) have been developed in several countries, estimates of daily 
nitrogen dioxide (NO2) and ozone (O3) concentrations at high spatial resolution are lacking, and no 
such models have been developed in Sweden. We collected data on daily air pollutant 
concentrations from routine monitoring networks over the period 2005–2016 and matched them 
with satellite data, dispersion models, meteorological parameters, and land-use variables. We 
developed a machine-learning approach, the random forest (RF), to estimate daily concentrations 
of PM10 (PM<10 microns), PM2.5 (PM<2.5 microns), PM2.5–10 (PM between 2.5 and 10 microns), NO2, 
and O3 for each squared kilometer of Sweden over the period 2005–2016. Our models were able to 
describe between 64% (PM10) and 78% (O3) of air pollutant variability in held-out observations, and 
between 37% (NO2) and 61% (O3) in held-out monitors, with no major differences across years and 
seasons and better performance in larger cities such as Stockholm. These estimates will allow to 
investigate air pollution effects across the whole of Sweden, including suburban and rural areas, 
previously neglected by epidemiological investigations. 

Keywords: air pollution; epidemiology; machine learning; nitrogen dioxide; ozone; particulate 
matter; random forest 
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1. Introduction 

Air pollution is a major risk factor to human health, causing >4 million premature deaths every 
year worldwide, with more than 90% of the population living in areas exceeding the guideline limits 
from the World Health Organization [1]. 

The health effects of air pollution have been extensively documented in the epidemiological 
literature, and they have been broadly distinguished into acute effects stemming from short-term 
(e.g., daily) exposures [2–4] and chronic effects induced by long-term (e.g., annual) exposures [5]. In 
the former, the hypothesis is that day-to-day variability in air pollutants is causally related to daily 
peaks in mortality (or morbidity) outcomes, whereas in the latter it is assumed that residing in areas 
with larger-than-average air pollution exposures will increase adverse health effects in the long run. 
It is therefore necessary to characterize air pollutant distributions over space and time in order to 
design proper epidemiological studies able to disentangle acute and chronic effects. 

Most of the evidence on the health effects of air pollution has focused on particulate matter 
(PM), especially the fine fraction (PM2.5), and previous studies have generally been conducted in 
urban areas due to lack of observations or reliable model estimates for suburban or rural areas [5–7]. 
This is a limitation, since many people live in non-urban areas characterized by a different source 
profile of air pollution compared to cities [8]. In addition, access to healthcare facilities can be more 
problematic in remote areas posing a greater risk to the most vulnerable and isolated individuals [9]. 
Finally, concentrations of PM2.5 and nitrogen dioxide (NO2) are expected to be lower away from the 
major cities, and most of recent research is trying to understand whether there exist health effects 
from air pollution that then require revision of the air quality standards. 

NO2 is a traffic-generated air pollutant that has been related to both acute and chronic effects on 
humans [10,11]. Most of the short-term studies have used crude estimates of daily exposures based 
on central monitoring stations, whereas long-term studies have defined exposures based on 
estimates from land-use regression, dispersion models, or hybrid approaches [12]. However, 
research on the health effects of NO2 exposures in smaller cities or suburban and industrial regions is 
lacking. This is likely because reliable estimates of spatial and temporal variability of NO2 
concentrations over large geographical domains are few. While in principle there is no reason to 
believe that NO2 effects, per unit change, should differ between urban and non-urban areas, in 
practice this may occur, because the composition of the underlying populations living in cities or out 
of them might be substantially different. 

Tropospheric ozone is one of the most toxic components of the photochemical air pollution 
mixture. It is an oxidant air pollutant generated by photochemical reactions involving nitrogen 
oxides and volatile organic compounds. Short-term effects of ozone on mortality and morbidity have 
been reported in the epidemiological literature, among others from large multi-center studies 
conducted in Europe [13,14], the United States [15], and China [16]. The effects of long-term 
exposure to ozone on human health has however not been fully established [17]. Ozone levels are 
much higher today than in the pre-industrial era, and there are concerns of future increases related 
to global warming [18]. However, predicting ozone concentrations at fine spatial and temporal 
concentrations is extremely difficult because many parameters related to local sources, land-use 
characteristics, and meteorological conditions are involved in ozone formation and removal, 
resulting in high spatial and temporal variability [19]. 

We aimed to develop a new multi-stage methodology based on a machine-learning 
method—random forest (RF)—to estimate PM (10, 2.5, and 2.5–10), NO2, and ozone (O3) with high 
temporal (daily) and spatial (1-km2) resolution across the whole of Sweden for the period 2005–2016. 
The method, already tested in Italy for PM [20], has for the first time characterized population 
exposure to multiple air pollutants also in areas with very low concentrations. The results obtained 
will allow investigators to study short-term and long-term effects of air pollution on human health at 
the national level in Sweden. 
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2. Data and Methodology 

2.1. Study Region 

Sweden belongs to northern Europe, located between the Baltic Sea (south and east), Finland 
(east), and Norway (north and west). With its approximately 450,000 square kilometers, it is the 
largest country in northern Europe and the 4th largest country of Europe. Sweden is characterized 
by a long coastal line and the presence of many lakes and rivers. Around 65% of Sweden’s total land 
area is covered with forests. The highest population density is in southern Sweden, while the 
northern part encompasses almost 60% of the country area and is only sparsely populated. For the 
aims of this study, we defined a regular grid of 1-km2 resolution over Sweden, for a total of 460,296 
grid cells. In addition, in order to obtain finer estimates of daily air pollutants for Stockholm County, 
we nested a finer grid of cells sized 200 × 200 m in this area, for a total of 180,025 pixels. 

2.2. Air Pollution Data 

Data of daily air pollution concentrations were provided by the air quality database of the 
Swedish Meteorological and Hydrological Institute (SMHI). The urban data were from regulatory 
monitoring networks according to the requirements of the EU Air Quality Directive 2008/50/EC 
using reference instruments (or equivalent). Data from measurements located in rural areas were 
from the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission 
of Air Pollutants in Europe [21]. 

During 2005 to 2016, 180 monitoring sites in Sweden collected data on PM, 144 on NO2, and 52 
on O3, with higher coverage in southern Sweden and in later years (67, 53, and 27 sites in 2016 and 
53, 51, and 20 sites in 2005). The spatial distribution of the ground-based sites is presented in Figure 
1, while the number of monitors and descriptive statistics per year and pollutant are reported in 
Table 1. 

 
Figure 1. Spatial distribution of the monitoring stations in Sweden, years 2005–2016.
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Table 1. Number of monitors per year and pollutant, and descriptive statistics. 

Year 
PM10 PM2.5 NO2 O3 

No. of 
Stations Median 25th–75th 

Percentiles 
No. of 

Stations Median 25th–75th 
Percentiles 

No. of 
Stations Median 25th–75th 

Percentiles 
No. of 

Stations Median 25th–75th 
Percentiles 

2005 61 15.6 9.9–24.2 7 10.3 7.8–14.4 60 15.4 7.9–27.2 23 56.9 43.6–70.4 
2006 72 16.8 11.1–25.4 17 10.5 7.4–15.1 67 17.2 8.7–29.9 29 58.9 45.4–71.5 
2007 64 15.6 10.1–24.0 18 8.1 5.6–11.3 55 15.2 7.9–27.9 29 55.1 43.7–66.5 
2008 58 15.3 9.7–23.1 17 7.9 5.3–11.3 60 16.3 8.4–28.3 24 54.6 41.3–68.0 
2009 54 14.3 9.2–21.3 25 6.2 4.0–9.5 58 16.5 8.7–28.2 26 53.9 42.1–65.8 
2010 61 13.4 8.6–20.2 24 6.0 3.8–9.5 58 19.1 8.8–33.2 26 55.6 43.0–66.9 
2011 59 15.0 9.6–23.2 25 6.0 3.7–9.9 58 18.1 8.3–31.0 27 57.0 43.2–70.2 
2012 60 12.7 8.4–19.4 24 5.0 3.1–8.1 60 18.1 9.0–30.0 22 51.7 39.3–64.8 
2013 66 13.4 8.5–20.4 21 5.0 3.1–7.6 58 18.3 9.6–31.2 30 55.3 43.8–67.9 
2014 63 13.7 8.7–20.8 28 5.8 3.6–9.1 50 17.2 8.8–28.9 30 54.2 42.0–65.2 
2015 55 12.0 8.0–18.1 27 4.7 3.1–7.0 45 16.6 7.8–29.0 30 55.9 44.7–66.0 
2016 62 11.4 7.4–17.6 29 4.5 2.8–7.1 53 17.5 8.6–29.5 30 52.4 40.7–63.6 

2005–2016 172 13.9 8.9–21.3 59 6.0 3.7–9.5 141 17.1 8.5–29.6 45 55.1 42.7–67.2 
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2.3. Spatiotemporal Predictor Variables 

We collected a number of spatiotemporal predictor variables aimed at capturing variability in 
air pollution concentrations due to complex interactions between spatial and temporal components. 
These are defined as variables (e.g., temperature) that vary on a daily basis and between grid cells. 

Aerosol Optical Depth (AOD). AOD is a measure of optical aerosol loading (the amount of light 
absorbed or scattered by suspended particles) and is expected to be related to the number of aerosol 
particles, larger than 0.1 micron, in a column of air. NASA has recently developed an aerosol 
retrieval algorithm, the Multi-Angle Implementation of Atmospheric Correction (MAIAC), which 
provides AOD data at 1-km2 spatial resolution [22,23]. Similar to the approach applied for Italy 
[20,24], here we used MAIAC AOD data derived from Collection 6 MODIS Aqua level 1 data for the 
period 2005–2016. Since MAIAC AOD data are not represented for many days and over many areas 
in Sweden, we also used modelled AOD data from the Monitoring Atmospheric Composition and 
Climate–Interim Implementation (MACC-II) project. This project was developed within the 
Copernicus Atmosphere Monitoring Service (CAMS) and is available from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) website [25]. AOD at five different wavelengths (469, 
550, 670, 865, and 1240 nm) for all days within the period 2005–2016, at 0.125° × 0.125° 
(approximately 10 × 10-km2) spatial resolution, were investigated here. 

Meteorological data. Meteorological parameters (air and dew point temperature, sea-level 
barometric pressure, total cloud coverage, surface wind speed and direction, snow albedo, and 
planetary boundary layer (PBL) height) were retrieved by the ERA-Interim reanalysis project [26]. 
Data at the spatial resolution of 0.125° × 0.125° corresponding to 0:00 and 12:00 UTC for each day in 
2005–2016 were included in the study. 

Atmospheric composition data. We retrieved parameters of global atmospheric composition from 
ERA-Interim (total column ozone, 2005–2016), MACC re-analysis (PM2.5, PM10, and total column 
nitrogen oxides, 2005–2012), and CAMS near-real time models (PM2.5, PM10, and total column 
nitrogen dioxides, 2013–2016). Each parameter was downloaded for the 8 three-hour windows from 
0:00 to 21:00 each day in 2005–2016, at the maximum spatial resolution available (0.125° × 0.125°). 

Normalized Difference Vegetation Index (NDVI). We collected monthly estimates of NDVI from the 
MODIS NDVI product (MOD13A3) at 1-km2 spatial resolution. 

2.4. Spatial Predictor Variables 

Spatial predictor variables are aimed at capturing variability in air pollution concentrations due 
to sources assumed constant over time (e.g., roads network). 

Resident population. Data on the Swedish resident population for the year 2016 were provided 
by Statistics Sweden (SCB) for each of the 5985 demographic statistical areas (DeSO). 

Imperviousness surface area (ISA). ISA is an indicator of the spatial distribution of artificial 
areas. For example, ISA includes housing areas, traffic areas (airports, harbors, railway yards, 
parking lots), roads, industrial and commercial areas, construction sites, etc. These data, with a 
spatial resolution of ~20 m and corresponding to year 2012, were downloaded from the Copernicus 
Land Monitoring Service (CLMS). 

Light at night (LAN). LAN data are a proxy indicator for major conurbations and human 
activities. They were collected from the Visible Infrared Imaging Radiometer Suite (VIIRS) 
Day/Night Band (DNB), year 2015 [27], at a spatial resolution of ~750 m. 

Land cover data. Land cover data were based on the Corine Land Cover (CLC) database of the 
year 2012 [28], and defined as percentage of each grid cell covered by eleven CLC classes (high/low 
development, urban green, industries, arable land, pastures, deciduous/evergreen/forest/shrubs, 
water). 

Road density. Aggregated road density data at 1 km spatial resolution for “all” and “major” 
roads. The road data were originally obtained from the EuroStreets digital road network (version 
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3.1, based on TeleAtlas MultiNet TM for year 2008) and more details can be found in de Hoogh et al. 
[29] and Vienneau et al. [30]. 

Elevation. Mean elevation was downloaded from the European Digital Elevation Model 
(EU-DEM) provided by CLMS at 30 m spatial resolution. 

2.5. Statistical Models 

We developed a three-stage statistical methodology, based on random forests, as described in 
more detail by Stafoggia et al. [20]. Briefly, random forests are a family of machine-learning methods 
that consist in building an ensemble (or forest) of decision trees [31]. At any iteration, each tree is 
built using a bootstrap sample of the data, and each node of the tree is split according to a subset of 
randomly chosen predictors [32]. Finally, an optimal prediction of the target variable is obtained by 
averaging the outputs from each tree. The model also provides an estimate of the relative 
“importance” of each predictor, that is, how much the prediction squared error over all trees 
decreases after a variable is selected in the tree building process. We applied a different regression 
random forest model for each pollutant and stage of the analysis, as described below. 

The first stage, only applied for PM, was aimed at establishing statistical relationships between 
daily PM2.5 and PM2.5–10 concentrations with co-located PM10 measurements, in order to estimate fine 
and coarse PM at monitor sites and for days with data available only for PM10. The outcome from 
this model was to produce an enlarged dataset for PM2.5 and PM2.5–10, to be used in stage 3. This was 
achieved by training the following regression random forest model: 

PMx ~ RF (PM10 + site_location + month + day_of_week + latitude + longitude) 

where PMx (x being either “2.5” or “2.5–10”) was related to co-located PM10, location of the 
monitoring site (classified as either urban traffic, urban background, or rural), month, day of the 
week, and coordinates of the site. We added month and day of the week to capture residual 
temporal variations in air pollution due to seasonal and weekly patterns. 

The second stage establishes a statistical relationship between observed MAIAC AOD and 
co-located modelled CAMS AOD, plus additional spatial and temporal predictors. The aim was to 
impute AOD in grid cells and for days with no MAIAC retrievals available, so a full spatiotemporal 
surface of AOD could be used in stage 3. The regression random forest model was the following: 

MAIAC.AOD ~ RF (∑ ∑ CAMS. AOD୩,୦଼ୀଵହୀଵ  + day_of_year + latitude + longitude) 

where MAIAC AOD was related to CAMS AOD at different bands k and three-hour windows h, day 
of the year (from 1 to 365), and coordinates of the cell centroid. This stage is only relevant for PM 
modelling, as AOD was not used as a predictor for NO2 or O3 models. 

Finally, the third stage aimed to establish relationships between daily air pollutant 
concentrations and AOD (for PM only), meteorology, atmospheric composition data, land use, and 
other predictors in order to estimate fields of PM, NO2, and O3 concentrations over areas where no 
monitoring stations were located. In addition, in order to account for autocorrelation of air 
pollutants over time (air pollution corresponding to present day being correlated with air pollution 
from previous day or days), we added lagged terms corresponding to three previous days for 
meteorological variables, air composition parameters, and AOD. We developed separate models for 
each pollutant over the whole period 2005–2016, as described below: ݐ݊ܽݐݑ݈݈ܲݎ݅ܣ,~ܴܨ( ଵܺ(ೕ,ೕషభ,ೕషమ,ೕషయ) +ܺଶ )  

where the concentration of each air pollutant (PM10, PM2.5, PM2.5-10, NO2, or O3) measured in grid cell i 
on day j was trained against spatiotemporal parameters (indexed by m) for the same cell and up to 
day j-3 (AOD (for PM models only), pollutant-specific atmospheric composition variable, 
meteorological parameters, planetary boundary layer height, NDVI, and spatial parameters 
(indexed by n) for the same grid cell (resident population, ISA, LAN, CLC variables, elevation, 
length of all roads, length of major roads). 



Atmosphere 2020, 11, 239 7 of 19 

 
 

We checked the performance of each random forest model via “cross-validation” following two 
different approaches. First, we compared the predictions and observations from the “out-of-bag” 
(OOB) data of the random forest. In particular, each RF bootstrap dataset samples, on average, two 
thirds of the observations which are used to train the model (“in-bag” sample). The remaining third, 
called “out-of-bag” (OOB), is used as an external dataset for model validation. Second, since our 
objective was to estimate air pollutants over places with no monitoring stations, we also performed a 
cross-validation of the monitoring sites, that is, by randomly splitting the total set of monitors into 
ten groups. The model was applied on nine groups (“training” set) and predicted to the tenth group 
(“testing” set). We reiterated the procedure over the ten groups and finally checked the correlation 
between observed air pollutant concentrations and predictions in held-out monitors. The 
comparisons of both approaches were summarized in terms of R2 (% of explained variance), root 
mean square error (RMSE), as well as intercept and slope (as measures of bias, obtained from a 
univariate linear regression between observations and cross-validated predictions) [20]. 

All statistical analyses were performed in R Version 3.6.0 (R Foundation for Statistical 
Computing, Vienna, Austria) using the package “ranger” for random forest models. GIS predictor 
variables were calculated using ArcGIS 10.5 (ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA, 
USA). 

3. Results and Discussion 

3.1. Monitored Data 

The numbers of monitoring sites available in Sweden for each pollutant and year are reported 
in Table 1. These were the same for PM10, NO2, and O3 during the study period, whereas numbers of 
sites measuring PM2.5 concentrations have substantially increased over time, from 7 in 2005 to 29 in 
2016. Across the whole period, PM10 was measured in 98 sites located in proximity to traffic sources, 
67 sites representing urban background concentrations, and 7 sites located in rural or remote areas. 
Corresponding numbers of sites were 26, 27, and 6 for PM2.5, 69, 62, and 10 for NO2, and 7, 19, and 19 
for O3 (data not shown). 

Mean concentrations of PM10 and PM2.5 were very small and decreasing over time, whereas gas 
concentrations did not show any temporal trends. 

3.2. Stages 1 and 2 

The results of the stage 1 models predicting monitor-specific PM2.5 and PM2.5-10 concentrations 
from co-located PM10 data for the period 2005–2016 are reported in Table S1 (Supplementary 
Materials). The linear correlations (as measured by Pearson’s ρ coefficient) with co-located PM10 data 
were higher for coarse particles (ranging between ρ = 0.82 (2011) and ρ = 0.93 (2013)) than for fine 
particles (between ρ = 0.52 (2012) and ρ = 0.71 (2007)). As a consequence, stage 1 prediction models 
displayed a better performance for the coarse fraction, as reflected by the higher CV R2, both in the 
OOB samples and in the left-out monitors. 

Table S2 (Supplementary Materials) reports similar results for the stage 2 models, aimed at 
filling in missing data of MAIAC AOD using the co-located AOD estimates from CAMS as the main 
predictors. As displayed in the table, there were large missing fractions of MAIAC AOD data in 
Sweden. The relatively high linear correlations between co-located MAIAC and CAMS, in the order 
of ρ = 0.7, resulted in very good and stable stage 2 prediction models, with OOB CV R2 ranging 
between 0.82 in 2016 and 0.88 in 2006, with negligible mean errors. 

3.3. PM Results 

CAMS predictions of PM10, PM2.5, and PM2.5–10 were positively correlated with co-located 
measured concentrations (Table 2). The CAMS atmospheric composition variables were also among 
the most important predictors in the stage 3 training models, possibly because they were able to 
predict both spatial and temporal variability of PM. As expected, planetary boundary layer showed 
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a negative correlation with all particle metrics (the lower the mixing layer, the higher the 
ground-level concentrations), while barometric pressure was positively correlated with the particles 
(as higher pressure reflects stable conditions with little air circulation and consequent accumulation 
of pollutants from local sources). The north–south wind direction was only important in the training 
model for PM2.5, while cloud coverage was negatively correlated with, and highly important in 
models for, PM10 and PM2.5–10. AOD was weakly correlated with all PM metrics and marginally 
important in the training models. Among the spatial predictors, proxies for urban areas (such as 
resident population, ISA, light at night, % urban area, road density) were positively correlated with 
PM, whereas variables describing natural land cover showed a negative correlation and a very 
limited importance in the training models. Interestingly, PM2.5 concentrations were mostly explained 
by spatiotemporal covariates describing daily meteorological patterns, whereas PM2.5-10 
concentrations were better captured by spatial covariates representing urban settings (such as 
population density and impervious surfaces), and PM10 data by a mix of both spatial and 
spatiotemporal variables (Table 2). Most of the aforementioned correlations, even when small in 
absolute values, where statistically significant (p-value < 0.05) because of the large number of 
observations analyzed. 

Table 2. Results of the stage 3 model: Spearman’s correlations between air pollutants and predictors, 
and relative importance (rank) of individual predictors in the random forest (RF) model. AOD, 
Aerosol Optical Depth; PBL, Planetary Boundary Layer; U, u component of the wind (horizontal 
wind toward east); V, v-component of the wind (horizontal wind towards north); NDVI, Normalized 
Difference Vegetation Index; ISA, Imperviousness Surface Areas; LAN, Light At Night. 

Predictor 
PM10 PM2.5 PM2.5-10 NO2 O3 

ρ  
Importance 

(Rank) 
ρ 

Importance 
(Rank) 

ρ 
Importance 

(Rank) 
ρ 

Importance 
(Rank) 

ρ 
Importance 

(Rank) 
Spatiotemporal 

AOD 0.05 14 0.13 15 −0.01 13 −0.05 - 0.15 - 
atmospheric composition var. 0.35 1 0.44 1 0.21 4 0.12 12 0.35 3 

PBL (at midnight) −0.14 8 −0.14 13 −0.10 9 −0.21 6 0.09 2 
PBL (at midday) 0.06 11 −0.08 4 0.14 10 −0.13 4 0.35 1 

wind U component −0.02 15 −0.09 7 0.03 15 −0.02 7 0.05 5 
wind V component 0.09 9 0.16 2 0.03 14 0.00 8 −0.01 7 

air temperature 0.02 17 −0.01 14 0.04 17 −0.13 16 0.12 4 
dew point temperature −0.04 16 −0.01 11 −0.06 11 −0.13 13 −0.02 10 

cloud coverage −0.17 3 −0.04 9 −0.20 2 −0.06 18 −0.21 13 
barometric pressure 0.18 4 0.18 3 0.14 7 0.10 20 −0.02 16 

snow albedo 0.00 19 0.01 18 −0.02 16 −0.11 - −0.06 - 
NDVI −0.13 10 -0.11 8 −0.12 5 −0.31 15 0.07 11 
Spatial 

resident population 0.17 5 −0.01 - 0.24 1 0.34 3 −0.15 12 
ISA 0.17 2 0.16 6 0.14 3 0.27 5 −0.16 - 

LAN 0.08 13 −0.02 12 0.13 8 0.27 1 −0.11 14 
elevation −0.18 7 −0.16 5 −0.15 12 −0.23 9 0.14 8 

all roads length 0.17 6 0.10 10 0.18 6 0.44 2 −0.16 15 
major roads length 0.04 - 0.03 - 0.04 - 0.17 14 −0.07 - 

% arable land −0.05 - 0.01 - −0.07 - −0.14 - 0.01 - 
% deciduous −0.04 - 0.01 - −0.07 - −0.18 - 0.05 - 
% evergreen −0.17 - −0.12 - −0.16 21 −0.29 - 0.15 - 

% forest −0.09 - −0.08 - −0.08 - −0.17 - 0.06 - 
% industry 0.02 - 0.02 17 0.01 19 −0.03 17 −0.01 - 
% pasture 0.04 - 0.04 - 0.03 - −0.15 - 0.04 - 
% shrub −0.12 - −0.11 - −0.09 - −0.19 - 0.05 - 

% urban area 0.12 18 0.07 16 0.13 20 0.32 11 −0.18 6 
% urban green −0.10 - −0.09 - −0.09 18 -0.15 19 −0.03 - 

% water 0.08 20 0.00 - 0.13 22 0.18 10 −0.13 9 
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The relationship between PM measurements and stage 3 predictions in OOB samples and 
left-out monitors are displayed in Figure 2a–c, and in Tables S3 and S4 (Supplementary Materials). 
In general, all the models provided unbiased predictions of PM, in both OOB samples and left-out 
monitors, resulting in univariate regression lines between observed and predicted PM with slopes 
close to one and intercepts close to zero (Figure 2). Model fit was better for PM2.5 (CV-R2 = 0.69 in 
OOB sample, 0.59 in left-out monitors), compared to PM10 (0.64 and 0.50) and PM2.5–10 (0.65 and 0.45). 
As expected, predictions in OOB samples captured higher percentages of PM variability, and 
introduced smaller errors, than the corresponding ones in left-out monitors. This is because, in the 
first approach, all monitors contributed with daily data in both training and testing datasets, 
whereas, in the second approach, separate monitors contributed the training and testing sets. Model 
fit statistics in both OOB samples (Table S3) and left-out monitors (Table S4) showed no major 
differences by year, season, and location of the monitors (urban traffic, urban background, rural), 
with good performance in the larger urban areas, such as Stockholm and Malmö. 

Annual mean concentrations estimated for the year 2016 are displayed in Figure 3, and daily 
time series for the same year are shown in Figure 4. The PM10 and PM2.5 fields in Figure 3 show clear 
geographical variation, with increasing north–south and west–east gradients (with the largest urban 
areas being in southern Sweden and near the coast and the northwestern areas being characterized 
by large forests, mountain ranges, and remote isolated villages). PM2.5-10 concentrations are highest 
near the coast and in the major cities, with no clear geographical variations with respect to north–
south and west–east directions. Results for the other years investigated here are similar (not shown). 

The time series displayed in Figure 4 show that the model (orange line) is capturing daily PM 
concentrations very well, as reflected in the comparisons with the measurements (blue line). The 
green line represents daily mean concentrations estimated for the whole of Sweden, which are lower 
than the values observed at the monitors, as these are usually located in populated areas 
characterized by higher-than-average concentrations.
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Figure 2. Results of the stage 3 model* for the five pollutants, PM2.5 (a), PM10 (b), PM2.5-10 (c), NO2 (d), and O3 (e): measurements and predictions from “out-of-bag” 
(OOB) samples and 10-fold cross-validation by monitors. * Measurements (y-axis) vs. predictions (x-axis). The red and light blue lines represent the univariate 
regression lines between measurements and predictions in OOB samples or left-out monitors, respectively. Measurements are displayed on the y-axis as the 
purpose of the plot is to show how much variability in observations is captured, and how much bias introduced, by predictions. 
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Figure 3. Fields of annual average air pollutant concentrations estimated for year 2016. 



Atmosphere 2020, 11, 239 12 of 19 

 
 

 
Figure 4. Time series of air pollutant concentrations: daily mean observations (blue line), daily mean predictions at the monitors (orange line), and daily mean 
predictions for the whole of Sweden (green line), year 2016. 
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3.4. NO2 Results 

Variability in NO2 concentrations was mainly explained by spatial variables representing local 
sources in urban areas, such as LAN, road density, resident population, and ISA. Among the 
spatiotemporal predictors, Table 2 shows that PBL and wind components were to a high degree 
correlated with NO2 (and important in the training models), whereas columnar NO2 estimates from 
CAMS were marginally correlated with measurements and irrelevant in the training model. A 
consequence of the role played by spatial predictors is that the performance of the model differed in 
OOB samples or left-out monitors. In the first case a high percent of NO2 variability was explained 
by the model (R2 = 0.74), while in the second the R2 decreased to 0.37, showing a limited ability of the 
model to predict full time series of NO2 concentrations in external points (Table S4). This is apparent 
in Figure 2d, where the univariate regression lines relating NO2 measurements with 10-fold CV (blue 
line) or OOB (red line) predictions deviate substantially, particularly for the former (blue points). 
This resulted in larger prediction errors for 10-fold CV estimates (12.9 µg/m3 on average, Table S4) 
than for OOB estimates (8.3 µg/m3, Table S3). 

The mean predictions for 2016 are highest in the main cities and along the most important 
roadways (Figure 3, bottom left). This is also reflected in the daily time series for 2016, where the 
predicted and measured concentrations for the monitoring stations are much higher (around 25 
µg/m3) than those estimated for the whole of Sweden (around 3 µg/m3). 

3.5. O3 Results 

Ozone concentrations were highly positively correlated with spatiotemporal covariates such as 
PBL, total column O3 from ERA-Interim, and daily mean temperature, whereas spatial covariates 
were only marginally correlated with O3 observations and played a minor role in the training 
models. As for PM, there were mild differences in model fitting when considering OOB samples or 
left-out monitors, with little bias as apparent from Figure 2e, where both univariate regression lines 
do not depart from the 1:1 dashed line, and small mean prediction errors are observed (8.7 µg/m3 for 
OOB estimates, Table S3, and 11.6 µg/m3 for 10-fold CV estimates, Table S4). 

The map and the time series for 2016 show, as expected, opposite trends compared with PM10, 
PM2.5, and NO2, with highest estimated concentrations in remote and unpopulated areas, smallest 
concentrations along the coast and in the major cities (where the high concentrations of primary 
pollutants preclude the formation of ozone), and an inversed seasonality with spring–summer peaks 
and winter drops. 

3.6. Comparison with Local Dispersion Models in Stockholm 

Figure 5 and Table S5 (Supplementary Materials) present comparisons of concentrations of 
PM10 and NO2 predicted over Stockholm County by the stage 3 random forest and local dispersion 
models for the year 2015. 

A description of the emission data, wind, and dispersion model used for the local modelling is 
provided in Segersson et al. [33], and it has been used to quantify exposure in several 
epidemiological and health impact assessment studies [34–38]. 

The two models predicted different geographical distributions of PM10 concentrations, with 
higher levels in the archipelago and the western part of the county from the random forest, whereas 
the dispersion model predicted higher levels only around major roadways and in highly inhabited 
areas (Figure 5). Therefore, while the average predicted concentrations are similar between the two 
models (Table S5), the difference in the spatial distribution is relatively large, especially for the 
highest percentiles (Table S5). The correlation between the two predictions is weak (ρ = 0.22), and we 
have no clear explanation for that. Figure 5 shows that the NO2 fields estimated for Stockholm 
County are, on the other hand, more similar between the two models (ρ = 0.75). This is likely because 
the main drivers of the NO2 concentration and variability are associated with spatial terms (i.e., 
major roads and combustion sources), equally captured by the statistical (RF) and deterministic 
(DM) approaches. This resulted in slightly higher concentrations estimated by the dispersion model. 
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Figure 5. Prediction maps of the annual average concentrations of PM10 (top) and NO2 (Bottom) from 
random forest (left) and local dispersion (right) models in Stockholm County, year 2015. 

3.7. Comparison with Previous Studies 

In the last 15 years, there has been a proliferation of studies in which are developed 
spatiotemporal models to predict PM10 and PM2.5 daily concentrations over large geographical 
domains. The first ones to use columnar AOD to predict ground level particle concentrations 
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applied simple approaches such as multivariate regression or correlational analyses [39–41]. Later, 
Kloog et al. proposed a mixed model framework aimed at capturing the temporally varying 
relationship between AOD and PM due to meteorological conditions in the USA [42,43]. The same 
methodology has been applied elsewhere [24,44,45]. More recently, machine-learning methods, such 
as random forests [20], gradient boosting [46], and neural network [47], have been developed due to 
their flexibility in handling nonlinear and interactive relationships among predictors and PM. This is 
a highly valued characteristic in situations where the joint relationship between daily particulate 
matter and multiple spatial and spatiotemporal predictors is only marginally understood. In the last 
years, outputs from dispersion models have been added to the list of potential predictors, and 
“ensemble” approaches have been proposed, under the assumption that the average of multiple 
base learners would benefit from the relative advantages of each one of them [48,49]. 

It is very difficult to compare the performance of so many different methods used in previous 
studies with the one proposed here. In summary, machine-learning methods seemed to outperform 
regression-based approaches, and ensemble designs only marginally improved model fit compared 
with individual base learners [48,49]. In this regard, we expect that the random forest methodology 
proposed here is the preferable option and a strength point of our study. On the other hand, the 
performance of the stage 3 training models was suboptimal in some cases (especially in held-out 
monitors), possibly because of a limited number of monitoring stations or the lack of key predictors 
such as national traffic data, emission data from industrial sources, etc. Despite this, the present 
models for PM10 and PM2.5 performed well in the main urban areas, where a large fraction of the 
population lives, and are therefore a valuable tool for investigating long-term (e.g., annual) and 
short-term (e.g., daily) health effects in these populations. 

In contrast with PM2.5 and PM10, there are very few studies applying machine-learning methods 
to predict coarse PM [20], NO2 [50], or O3 [19] at fine spatiotemporal resolution over large 
geographical areas, and none of them conducted in Sweden. In a previous study conducted in Italy, 
we applied the same methodology proposed here to predict coarse PM, and we were able to predict 
77% of PM2.5-10 variability in OOB samples and 62% in held-out monitors [20]. De Hoogh et al. 
recently applied a similar approach to estimate NO2 in Switzerland for the period 2005–2016 [50]. 
Their model explained ~58% (R2 range, 0.56–0.64) of the variation in measured NO2 concentrations, a 
value consistent with our OOB (74%) and held-out monitor (37%) CV-R2. Di et al. developed a 
hybrid neural network methodology to predict daily ozone concentrations over the continental US 
and were able to predict 76% of O3 variability, similar to our model in OOB samples (77%) [19]. 

Air quality dispersion modelling has been applied to quantify local and regional exposure to 
PM1 and PM10 in Sweden [51]. It was shown that long-range transport dominates average Swedish 
residential PM1 and PM10 levels, but for urban populations the contributions from urban and local 
traffic sources may dominate for residences close to heavily trafficked roads. The decreasing south to 
north and east to west concentration gradients of PM10 across Sweden is very similar to the gradients 
obtained in the present study. Segersson et al. [33] modelled PM10, PM2.5, and black carbon (BC) in 
three urban areas in Sweden (Stockholm, Gothenburg, and Umeå) using Gaussian air quality 
dispersion models at a resolution of 100 × 100 m. The European, non-local contributions were taken 
from rural monitoring stations outside the cities or determined indirectly. Comparison between 
modelled and measured PM10 concentrations at traffic and urban sites showed relative differences 
between annual averages between +11% to −16% (>0 means model overestimate). Corresponding 
values for PM2.5 and BC were +24% to −49% and +13% to +14%, respectively. Korek et al. [52] applied 
a hybrid air pollution dispersion and land-use regression model (DM–LUR) using 93 biweekly 
observations of NOx at 31 sites in the greater Stockholm area. The model predicted NOx 
concentrations (R2 = 0.89) better than the DM without land-use covariates (R2 = 0.68, P-interaction < 
0.001). 

3.8. Strengths and Limitations 

The present study presents some important improvements compared with methods used in 
previous studies. First, it is the first study estimating daily concentrations of multiple air pollutants 
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for the whole of Sweden (and one of the few estimating coarse PM, NO2, and O3 worldwide). Second, 
it applied a machine-learning methodology, the random forest, which proved to be highly efficient 
in other countries, often outperforming alternative methods [49]. Third, it combined multiple data 
sources among the predictors, including satellite-based parameters (AOD, NDVI, LAN) and 
atmospheric composition data from ensemble models. The main limitations to be acknowledged are 
the small numbers of monitoring stations (especially for PM2.5 and O3), the large fraction of missing 
AOD data (which had, however, a limited impact on the model as AOD was marginally important), 
and the weakness of some of the training models in predicting air pollution variability especially in 
held-out monitors, possibly due to the few monitors available, the little variability in observed 
concentrations, and the lack of key spatial predictors. Another limitation to mention is the high 
collinearity among several covariates added as predictors to the random forest model. However, 
while random forests are quite efficient in dealing with interactions, we further tried to reduce this 
problem by selecting only the subset of predictors which explained a non-negligible amount of 
variability in air pollutant concentrations. This resulted in CV estimates with little bias and no clear 
overfit of the data. 

4. Conclusions 

In this study we applied a multi-stage random forest methodology to predict daily 
concentrations of PM10, PM2.5, PM2.5-10, NO2, and O3 for each squared kilometer of Sweden over the 
period 2005–2016. We combined satellite data, atmospheric composition variables, land-use terms, 
meteorological parameters, and population density as predictors of air pollution variability over 
space and time. Our models displayed negligible bias and were able to predict most of the 
variability, with cross-validated R2 in the range of 0.64–0.77 for out-of-bag samples and 0.37–0.60 for 
held-out monitors. While we believe that our models’ outputs should never replace measurements 
from operating monitoring networks, the estimates of spatial (e.g., annual means) and temporal 
(e.g., daily means) variability of multiple air pollutants as those provided here will allow the design 
of future epidemiological studies in Sweden aimed at investigating both short-term and long-term 
health effects of air pollution not only in the major cites but also in suburban and rural areas, 
previously neglected in epidemiological investigations. 
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descriptive statistics and statistics of model fit in OOB predictions; Table S3: Results of the Stage 3 model: 
statistics of model fit in predictions from “Out-of-bag” (OOB) samples; Table S4: Results of the Stage 3 model: 
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